Explicit results for the correlation length of the finite-sized spherical model of ferromagnetism

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 266797
(http://iopscience.iop.org/0305-4470/26/23/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:12

Please note that terms and conditions apply.

Explicit results for the correlation length of the finite-sized spherical model of ferromagnetism

Scott Allen and R K Pathria
Guelph-Waterloo Program for Graduate Work in Physics, Waterloo Campus, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

Received 2 July 1993

Abstract

We report explicit results for the zero-field correlation length, $\xi(T ; L)$, of a spherical-model ferromagnet confined to geometry $L^{d-d^{\prime}} \times \infty^{d^{\prime}}\left(d>2, d^{\prime} \leqslant 2\right)$ and subjected to 'twisted' boundary conditions. In the region of first-order phase transition ($T<T_{\mathrm{c}}$), ξ under 'twisted' boundary conditions obeys the same scaling law as under periodic boundary conditions, though with a different amplitude. In the 'core' region ($T \simeq T_{c}$), the scaling behaviour changes radically as one moves from one set of boundary conditions to the other-affected greatly by the 'pinning' of the ground-state wavevector k_{0} of the system.

1. Introduction

In a recent communication Henkel and Weston (1992) reported an exact calculation of the universal amplitude A of the correlation length ξ of the spherical model of ferromagnetism confined to geometry $L^{2} \times \infty^{1}$ and subjected to antiperiodic boundary conditions. Invoking a well-known analogy between statistical mechanics and quantum field theory (Henkel 1988, 1990), they derived a relationship between ξ and the thermogeometric parameter y of the system (Pathria 1972, 1983), namely

$$
\begin{equation*}
\xi=\frac{1}{2} L\left[y^{2}+\frac{\pi^{2}}{4} d^{*}\right]^{-1 / 2} \tag{1}
\end{equation*}
$$

valid at the bulk critical temperature T_{c}. Here, L denotes the size of the system in each of the d^{*} dimensions in which the system is finite while the precise value of y depends on both d^{*} and the total dimensionality d. Recalling that the corresponding resuit under periodic boundary conditions is $\xi=L / 2 y$, we note that the term additional to y^{2} in equation (1) is a measure of the 'shift in the quantum levels of the system owing to a switch from periodic to antiperiodic boundary conditions'.

While the main thrust of the Henkel-Weston approach was to extend a certain wellknown result of Cardy (1984) for the correlation length of a system from two to three dimensions, we here present an approach that examines the same problem in a considerably generalized context. To begin with, we extend the validity of relationship (1) to all temperature regimes of interest-especially to the region of first-order phase transition ($T<T_{\mathrm{c}}$) where the behaviour of ξ, as a function of L, is radically different from that in the 'core' region ($T \simeq T_{c}$). Second, we extend the calculation of ξ to a more general dimensionality d which includes the hyperscaling regime ($2<d<4$), the mean-field regime $(d>4)$ as well as the borderline dimensionality 4 . Third, we introduce
a continuous vector parameter $\tau=\left(\tau_{1}, \ldots, \tau_{d^{*}}\right)$ that measures the shift of the quantum levels of the system-such that any $|\tau|>0$ entails 'twisted' boundary conditions (of which antiperiodic ones, with $\tau_{1}=\ldots=\tau_{d^{*}}=\frac{1}{2}$, are an extreme case), while $\tau=0$ entails the familiar periodic ones.

In section 2 we provide an independent, theoretical basis for a generalized version of equation (1) by appealing to certain special features of the spin-spin correlation function, $G(R, T ; L)$, of the spherical model ferromagnet confined to geometry $L^{d^{*}} \times \infty^{d^{\prime}}\left(d^{*}+d^{\prime}=d>2\right)$. This enables us to determine the correlation length $\xi(T ; L)$ of the system, extending the validity of the Henkel-Weston result from $T=T_{c}$ to all $T \leqslant T_{c}$; we shall note that the result in question applies at $T \geqslant T_{c}$ as well. Of course, for an explicit evaluation of ξ, the parameter y has to be eliminated with the help of the constraint equation of the system (see, for instance, Singh and Pathria 1985). In section 3 this explicit evaluation is carried out for $T<T_{c}$. We find that, for $d^{\prime}<2$, the asymptotic behaviour of ξ under antiperiodic boundary conditions is qualitatively similar to the one found previously under periodic boundary conditions; it is only the amplitudes that differ. For $d^{\prime}=2$, the comparison is somewhat subtle. In section 4 we calculate ξ at the bulk critical temperature T_{c} and find a radically different scaling behaviour depending on whether $|\tau|>0$ or $|\tau|=0$; the observed difference is even more striking when d is close to, or greater than, 4. Under 'twisted' boundary conditions the correlation length follows closely the behaviour found in $d=4-\varepsilon$ dimensions under free (Dirichlet) boundary conditions (Eisenriegler 1985) or in the Ising model with $d>4$ again under free boundary conditions (Rudnick et al 1985), and bears little resemblance to the results pertaining to the periodic case. In section 5 we close the paper with some general remarks on the problem studied here.

2. Formulation of the problem

In a separate investigation (Allen and Pathria, unpublished) we have examined the spinspin correlation function, $G(R, T ; L)$, of a d-dimensional, field-free spherical-model ferromagnet confined to geometry $L^{d^{*}} \times \infty^{d^{\prime}}\left(d^{*}+d^{\prime}=d>2\right)$ under 'twisted' boundary conditions. Using techniques developed by Joyce (1972), by Barber and Fisher (1973) and by Singh and Pathria (1987), we find that for $R, L \gg a$ where a is the lattice constant of the system

$$
\begin{align*}
G(R, T ; L) \approx & \frac{T}{4 \pi^{d / 2} J}\left(\frac{a}{L}\right)^{d-2} \sum_{q\left(d^{*}\right)} \prod_{j=1}^{d^{*}} \cos \left(2 \pi q_{,} \cdot \tau_{j}\right)\left[\frac{y}{\left(\left|q+\varepsilon_{\perp}\right|^{2}+\varepsilon_{\|}^{2}\right)^{1 / 2}}\right]^{(d-2) / 2} \\
& \times K_{(d-2) / 2}\left(2 y\left(\left|q+\varepsilon_{\perp}\right|^{2}+\varepsilon_{\|}^{2}\right)^{1 / 2}\right) \tag{2}
\end{align*}
$$

with

$$
\begin{equation*}
\varepsilon_{\perp}=R_{\perp} / L \quad \varepsilon_{\|}=R_{\mathbb{k}} / L . \tag{3}
\end{equation*}
$$

Here, J is the nearest-neighbour interaction parameter, τ is a continuous vector parameter with components $\tau_{1}, \ldots, \tau_{d}$ each lying in the interval ($0, \frac{1}{2}$) , \boldsymbol{R}_{\perp} is the component of R in the d^{*}-dimensional sub-space while $R_{1}\left(=R-R_{\perp}\right)$ is the corresponding component in the d^{\prime}-dimensional sub-space. The sum involving modified Bessel functions $K_{\nu}(\approx)$ goes over the entire q-space in d^{*} dimensions, while the parameter y is a scaled
variable defined by the relation

$$
\begin{equation*}
y=\frac{1}{2} \frac{L}{a} \sqrt{\phi} \quad\left[\phi=\frac{\lambda}{J}-2 d\right] \tag{4}
\end{equation*}
$$

λ being the (spherical) field that enables one to satisfy the constraint on spins appropriate to the model under study. This leads to the constraint equation

$$
\begin{equation*}
\left(\frac{1}{T}-\frac{1}{T_{\mathrm{c}}}\right) \approx \frac{1}{4 \pi^{(4-d) / 2} J}\left(\frac{a}{L}\right)^{d-2} Q_{\tau}\left(\left.\frac{d-2}{2} \right\rvert\, d^{*} ; y\right) \quad 2<d<4 \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{\tau}\left(v \mid d^{*} ; y\right)=\left(\frac{y^{2}}{\pi^{2}}\right)^{v}\left[\sum_{q\left(d^{*}\right)}^{\prime} \cos (2 \pi q \cdot \tau) \frac{K_{v}(2 y q)}{(y q)^{v}}+\frac{1}{2} \Gamma(-v)\right] . \tag{6}
\end{equation*}
$$

As shown elsewhere (Allen and Pathria 1993a-hereafter referred to as I), the function $Q_{\tau}\left(v \mid d^{*} ; y\right)$ is regular in y^{2} for all $y^{2}>-\pi^{2} \tau^{2}$-a fact vitally important for analyses pertaining to 'twisted' boundary conditions under which the minimum value of ϕ, and hence of y^{2}, is negative; in fact, $\left(y^{2}\right)_{\min }$ is precisely equal to $-\pi^{2} \tau^{2}$ and is attained at $T=0 \mathrm{~K}$.

The problem of y^{2} becoming negative is seemingly detrimental to the sum appearing in equation (2) for $G(R, T ; L)$ which is initially defined only for $y>0$. An application of the Poisson summation formula, however, renders this expression into the form

$$
\begin{align*}
G(R, T ; L) \approx & \frac{T}{4 \pi^{d / 2} J}\left(\frac{a}{L}\right)^{d-2} \sum_{n\left(d^{*}\right)} \prod_{j=1}^{d^{*}} \cos \left[2 \pi\left(n_{j}+\tau_{j}\right) \cdot \varepsilon_{j}\right] \\
& \times\left[\frac{\varepsilon_{\|}}{\left(y^{2}+\pi^{2}|n+\tau|^{2}\right)^{1 / 2}}\right]^{\left(2-d^{\prime}\right) / 2} K_{\left(2-d^{\prime}\right) / 2}\left(2 \varepsilon_{\|}\left(y^{2}+\pi^{2}|n+\tau|^{2}\right)^{1 / 2}\right) \tag{7}
\end{align*}
$$

which may be analytically continued into the region $y^{2}<0$-right up to, but excluding, the point $y^{2}=-\pi^{2} \tau^{2}$ where the true singularity of the problem lies. In terms of temperature, expression (7) is valid down to, but excluding, $T=0 \mathrm{~K}$.

For $y \gg 1$ (which pertains to the region $T \gtrsim T_{\mathrm{c}}$), the sum in (7) may be approximated by an integral over $n\left(d^{*}\right)$, leading to the bulk result

$$
\begin{align*}
G(\boldsymbol{R}, T ; L) & =\frac{T}{2(2 \pi)^{d / 2} J}\left(\frac{a^{2}}{\xi_{B} R}\right)^{(d-2) / 2} K_{(d-2) / 2}\left(\frac{R}{\xi_{B}}\right) \tag{8}\\
& \approx \frac{T a^{d-2}}{4 J(2 \pi R)^{(d-1) / 2} \xi_{B}^{(d-3) / 2}} \mathrm{e}^{-R / \xi_{B}} \quad R \gg \xi_{B} \tag{9}
\end{align*}
$$

where $R=\left(R_{\perp}^{2}+R_{\|}^{2}\right)^{1 / 2}$, while $\xi_{B} \approx L / 2 y=a / \sqrt{\phi}$ is the bulk correlation length. Clearly, there is no ambiguity in defining ξ in the region $T \geqslant T_{\mathrm{c}}$.

As T decreases from above and approaches the close vicinity of T_{c}, y^{2} under 'twisted' boundary conditions may become negative, with magnitude of order unity. As T decreases further, y^{2} changes fast to become almost equal to $-\pi^{2} \tau^{2}$ and stays so until $T \rightarrow 0 \mathrm{~K}$ and $y^{2} \rightarrow-\pi^{2} \tau^{2}$. The situation throughout this region can be handled pretty
well through expression (7). In particular, keeping $\varepsilon_{\mathcal{L}}$ fixed and letting $\varepsilon_{\|}$become increasingly large, the dominant contribution to the sum in (7) comes from the term with $n=$ 0 , with the result \dagger

$$
\begin{align*}
G(R, T ; L) \approx & \frac{T}{4 \pi^{d^{\prime} / 2} J}\left(\frac{a}{L}\right)^{d-2} \prod_{j=1}^{d^{*}} \cos \left(2 \pi \tau_{j} \cdot \varepsilon_{j}\right)\left[\frac{\varepsilon_{\|}}{\left(y^{2}+\pi^{2} \tau^{2}\right)^{1 / 2}}\right]^{\left(2-d^{\prime}\right) / 2} \\
& \times K_{\left(2-d^{\prime}\right) / 2}\left(2 \varepsilon_{\|}\left(y^{2}+\pi^{2} \tau^{2}\right)^{1 / 2}\right) \tag{10}
\end{align*}
$$

With $G(\boldsymbol{R})$ factorized in terms of the components \boldsymbol{R}_{\perp} and $\boldsymbol{R}_{\|}$, we may invoke the correlation function of the $a^{\prime \prime}$-dimensional bulk system, namely

$$
\begin{equation*}
G\left(R, T ; \infty^{d^{\prime}}\right)=\frac{T}{2(2 \pi)^{d^{\prime} / 2} J}\left(\frac{\xi R}{a^{2}}\right)^{\left(2-d^{\prime}\right) / 2} K_{\left(2-d^{\prime}\right) / 2}\left(\frac{R}{\xi}\right) \tag{11}
\end{equation*}
$$

and write (10) in the highly instructive form

$$
\begin{equation*}
G\left(R, T ; L^{d^{*}} \times \infty^{d^{*}}\right) \approx\left(\frac{a}{L}\right)^{d^{*}} \prod_{j=1}^{d^{*}} \cos \left[2 \pi \frac{\tau_{j} \cdot R_{j}}{L}\right] G\left(\boldsymbol{R}_{\|}, T ; \infty^{d^{\prime}}\right) \quad R_{\perp}, L \ll R_{\|}, \xi \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi=\frac{L}{2\left(y^{2}+\pi^{2} \tau^{2}\right)^{1 / 2}} \tag{13}
\end{equation*}
$$

The interpretation of this result is straightforward. In particular, we note that in the perceived situation the parameters R_{\perp} and L are much smaller than $R_{\| \|}$and ξ, with the result that, while the decay of correlations in the direction of \boldsymbol{R}_{\perp} is determined solely by the 'twist' parameter τ, that in the direction of $\boldsymbol{R}_{\|}$is determined by a (correlation) function pertaining in form to a d^{\prime}-dimensional bulk system but scaled by a length ξ given by (13). Clearly, ξ represents the correlation length of the actual system in geometry $L^{d^{*}} \times \infty^{d^{\prime}}$ and not of the d^{\prime}-dimensional bulk system (which would have nothing to do with L).

Comparing (13) with (1) and remembering that, with antiperiodic boundary conditions applied along all finite dimensions, $\tau^{2}=\frac{1}{4} d^{*}$, we find that our expression for ξ, which should be valid for all $T<T_{c}$, is precisely the same as that derived by Henkel (1988) for $T=T_{c}$. The validity of Henkel's formula (1) is thus extended to all $T \leqslant T_{c}$. At the same time, since for $y \gg 1$ this result reduces to the τ-independent expression $L / 2 y$, it applies at $T \geqslant T_{\mathrm{c}}$ as well.

In passing, we note that relationship (13) for the correlation length of the spherical model under antiperiodic boundary conditions had been conjectured earlier by Singh et al (1986).

3. Correlation length at $T<T_{c}$

In the region of first-order phase transition $\left(T<T_{c}\right)$, where $y^{2} \simeq-\pi^{2} \tau^{2}$, we may express the various functions of y in terms of the small parameter $\left(y^{2}+\pi^{2} \tau^{2}\right)$. Using constraint

[^0]equation (5), we should then be able to determine ($y^{2}+\pi^{2} \tau^{2}$) as a function of T and L, and hence, by (13), $\xi(T ; L)$. To accomplish this task we make use of the asymptotic formula (see I).
$\lim _{y^{2} \rightarrow-\pi^{2} \tau^{2}} Q_{\tau}\left(v \mid d^{*} ; y\right) \approx \frac{1}{2} g_{\tau} \pi^{\frac{1}{d^{*}}-2 v} \Gamma\left(\frac{1}{2} d^{*}-v\right)\left(y^{2}+\pi^{2} \tau^{2}\right)^{v-\frac{1}{2} d^{*}} \quad v<\frac{1}{2} d^{*}$
where g_{τ} denotes the multiplicity of the terms, in the sum over $n\left(d^{*}\right)$, for which $|\boldsymbol{n}+\tau|=$ τ. In general, $g_{\tau}=2^{r}$ where $r\left(\leqslant d^{*}\right)$ is the number of components τ_{j}, of τ, that equal $\frac{1}{2}$; for each of these components, two terms (with $n_{j}=0$ and -1) contribute equally toward the sum. If antiperiodic boundary conditions are applied in each of the d^{*} finite dimensions, then $g_{\tau}=2^{d^{*}}$.

Substituting (14) into (5), we obtain

$$
\begin{equation*}
\left(y^{2}+\pi^{2} \tau^{2}\right) \approx\left[\frac{g_{z} \Gamma\left[\left(2-d^{\prime}\right) / 2\right]}{4 \pi^{d^{\prime} / 2} z_{1}}\right]^{2 /\left(2-d^{\prime}\right)} \quad d^{\prime}<2 \tag{15}
\end{equation*}
$$

where z_{1} is the scaled variable appropriate to this region (see Fisher and Privman 1985, Privman 1990)

$$
\begin{equation*}
z_{1}=\Upsilon(T) L^{d-2} / T \tag{16}
\end{equation*}
$$

$\Upsilon(T)$ being the helicity modulus of the bulk system which, for a spherical-model ferromagnet, is known to be (Fisher et al 1973)

$$
\begin{equation*}
\Upsilon(T)=\frac{2 J}{a^{d-2}}\left(1-\frac{T}{T_{\mathrm{c}}}\right) \tag{17}
\end{equation*}
$$

Expression (13) then gives

$$
\begin{equation*}
\xi_{A P}(T ; L) \approx\left[\frac{(4 \pi)^{d^{\prime} / 2} \Upsilon(T)}{\Gamma\left[\left(2-d^{\prime}\right) / 2\right] T}\right]^{1 /\left(2-d^{\prime}\right)}\left(\frac{L}{2}\right)^{\left(d-d^{\prime}\right) /\left(2-d^{\prime}\right)} \quad d^{\prime}<2 \tag{18}
\end{equation*}
$$

Comparing (18) with the corresponding expression for the periodic case (Singh and Pathria 1987), we find that in this region the two results are formally the same, except for a difference in amplitudes resulting from the replacement of L by $\frac{1}{2} L$ as one switches from the periodic boundary conditions to the antiperiodic ones. Further studies show that, so long as $d^{\prime}<2$, expression (18) for $\xi(T ; L)$ at $T<T_{c}$ holds for $d \geqslant 4$ as well.

For $d^{\prime}=2$, the situation is formally different. Now we employ the asymptotic formula

$$
\begin{equation*}
\lim _{y^{2} \rightarrow-\pi^{2} \tau^{2}} Q_{\tau}\left(v \mid d^{*} ; y\right) \approx \frac{1}{2} g_{\tau} \pi^{-\frac{1}{2} d^{*}} \ln \frac{1}{y^{2}+\pi^{2} \tau^{2}}+M_{\tau}\left(d^{*}\right) \quad . \quad v=\frac{1}{2} d^{*} \tag{19}
\end{equation*}
$$

where $M_{\tau}\left(d^{*}\right)$ is a constant defined in I. We now obtain

$$
\begin{equation*}
\xi_{\tau}(T ; L) \approx \frac{L}{2} \exp \left[\frac{2 \pi}{g_{z}}\left\{z_{1}-\frac{M_{\tau}(d-2)}{2 \pi^{(4-\alpha) / 2}}\right\}\right] \quad d^{\prime}=2 \tag{20}
\end{equation*}
$$

Thus, the quantity ξ / L in this case varies exponentially with the scaled variable z_{1}, the constant $M_{\tau}\left(d^{*}\right)$ affecting only the amplitude. For $d=3$ (and hence $d^{*}=1$)

$$
M_{0}(1)=-\pi^{-1 / 2} \ln 2 \quad M_{1 / 2}(1)=\pi^{-1 / 2} \ln (\pi / 2)
$$

leading to results that agree with the previous calculations of Singh and Pathria (1985,1987). In the present case, the amplitude of ξ differs qualitatively-depending on whether d is less than 4 as above or not. For $d=4$, for instance, we obtain

$$
\begin{equation*}
\xi_{t}(T ; L) \approx \frac{L}{2}\left(\frac{2 \pi a}{L}\right)^{\pi \tau^{2} / s_{\tau}} \exp \left[\frac{2 \pi}{g_{\tau}}\left\{z_{1}-\frac{M_{\tau}(2)}{2}+\frac{\psi(2)-\left|C_{4}\right|}{4} \tau^{2}\right\}\right] \tag{23}
\end{equation*}
$$

where $\psi(2)$ is the digamma function, $C_{4} \simeq-4.7920$, while $M_{\tau}(2)$ can be obtained from I; as $\tau \rightarrow 0$, the result of a recent study pertaining to the periodic case (Singh and Pathria 1992) is recovered. For $d>4$, on the other hand,

$$
\begin{equation*}
\xi_{\tau}(T ; L) \approx \frac{L}{2} \exp \left[\frac{2 \pi}{g_{\tau}}\left\{z_{1}-\frac{(2 \pi \tau)^{2}}{v_{3}}-\frac{\pi^{(d-4) / 2} M_{\tau}(d-2)}{2}\right\}\right] \tag{24}
\end{equation*}
$$

where v_{3} is another scaled variable defined by (see Singh and Pathria 1988)

$$
\begin{equation*}
v_{3}=w^{-1}\left(\frac{a}{L}\right)^{d-4} \quad w=\frac{1}{4} \int_{0}^{\infty}\left[\mathrm{e}^{-x} I_{0}(x)\right]^{d} x \mathrm{~d} x \tag{25}
\end{equation*}
$$

The constant $M_{z}(d-2)$ in this case has to be determined numerically.

4. Correlation length at $T=T_{c}$

There have been numerous studies on how the correlation length ξ varies explicitly with L (and d) at the bulk critical temperature T_{c} for finite-size $O(n)$ models under periodic boundary conditions (see, for instance, Brézin 1982, Brézin and Zinn-Justin 1985, Luck 1985, Rudnick et al 1985b). However, only limited results are available for systems under non-periodic boundary conditions, such as Eisenriegler (1985), Henkel (1988), Henkel and Weston (1992). Here we provide results for the correlation length $\xi\left(T_{\mathrm{c}} ; L\right)$ of the spherical model under 'twisted' boundary conditions in general geometry $L^{d-d^{*}} \times \infty^{d^{\prime}}$ for several regimes of d.

Case 1: $2<d<4$
The spherical constraint (5) now reduces to the condition

$$
Q_{z}\left(\left.\frac{d-2}{2} \right\rvert\, d^{*} ; y\right)=0
$$

which, for $2<d<4$, may be re-written as (see I)

$$
\begin{array}{r}
D_{\tau}\left(v \mid d^{*}\right)+\Gamma\left(\frac{1}{2} d^{*}-v\right) \sum_{n\left(d^{*}\right)}\left\{\left[|n+\tau|^{2}+\frac{y^{2}}{\pi^{2}}\right]^{v-\frac{1}{2} d^{*}}-|n+\tau|^{2 v-d^{*}}\right\}=0 \\
v=(d-2) / 2 \tag{26}
\end{array}
$$

where $D_{\tau}\left(v \mid d^{*}\right)$ is another constant defined in I. Using a generalized definition of $D_{\tau}\left(v \mid d^{*}\right)$, equation (26) can also be written as

$$
\begin{equation*}
\sum_{l=0}^{\infty} \frac{D_{z}\left(v-l \mid d^{*}\right)}{l!}\left(-\frac{y^{2}}{\pi^{2}}\right)^{l}=0 \tag{27}
\end{equation*}
$$

effectively reducing the problem from one involving a d^{*}-dimensional sum over vector n to one involving a 1 -dimensional sum over scalar l; of course, a knowledge of the constants $D_{\tau}\left(v-l \mid d^{*}\right)$ is essential for this reduction.

For $d=3$ and $d^{*}=1$, the problem can be solved exactly, for in this case equation (26) assumes the form

$$
\begin{equation*}
2 \ln (2 \sin \pi \tau)+\ln \prod_{n=-\infty}^{\infty}\left(1+\frac{y^{2}}{\pi^{2}(n+\tau)^{2}}\right)=0 \tag{28}
\end{equation*}
$$

The infinite product in (28) can be written in a closed form (see Gradshteyn and Ryzhik 1980) which leads to the explicit solution

$$
\begin{equation*}
\left.y_{\tau}\right|_{T=T_{\mathrm{c}}}=\cosh ^{-1}\left(\frac{5}{4}-\sin ^{2} \pi \tau\right)^{1 / 2} \tag{29}
\end{equation*}
$$

Special values, $y_{0}=\ln (\sqrt{5}+1) / 2$ and $y_{1 / 2}=\mathrm{i} \pi / 3$, are already known; the intermediate values, $y_{1 / 6}=0, y_{1 / 4}=\mathrm{i} \pi / 6$ and $y_{1 / 3}=\mathrm{i} \pi / 4$, may be noted now.

For $d^{*}=2$, equation (2) cannot be written in a closed form; the constants $D_{\tau}(\omega \mid 2)$ are, however, known for $\tau=\left(\frac{1}{2}, \frac{1}{2}\right)$, viz.

$$
\begin{equation*}
D_{\tau}(\omega \mid 2)=4.2^{i-\omega} \Gamma(1-\omega) \lambda(1-\omega) \beta(1-\omega) \tag{30}
\end{equation*}
$$

where $\lambda(s)$ and $\beta(s)$ are analytic continuations of the functions

$$
\begin{align*}
& \lambda(s)=\left(1-2^{-s}\right) \zeta(s)=\sum_{l=0}^{\infty}(2 l+1)^{-s} \quad s>1 \tag{31}\\
& \beta(s)=\sum_{l=0}^{\infty}(-1)^{l}(2 l+1)^{-s} \quad s>0 . \tag{32}
\end{align*}
$$

Equation (27) then reduces to

$$
\begin{equation*}
\sum_{l=0}^{\infty}\binom{v-1}{l} \lambda(l+1-v) \beta(l+1-v)\left(\frac{2 y^{2}}{\pi^{2}}\right)^{l}=0 \tag{33}
\end{equation*}
$$

which may be solved numerically for y. For $d=3$, i.e. $v=\frac{1}{2}$, we obtain: $y \simeq i 1.25213$ which may be compared with the value, i $5 / 4$, conjectured by Henkel and Weston (1992); see also Allen and Pathria (1993b).

For $d=d^{*}=3$, equation (26) assumes the form

$$
\begin{equation*}
D_{\tau}\left(\left.\frac{1}{2} \right\rvert\, 3\right)-\frac{y^{2}}{\pi^{2}} \sum_{n(3)} \frac{1}{|n+\tau|^{2}\left[|n+\tau|^{2}+y^{2} / \pi^{2}\right]}=0 \tag{34}
\end{equation*}
$$

which can also be rendered into a form similar to (27). The three-dimensional sums appearing in the definitions of the constants $D_{z}\left(\left.\frac{1}{2}-l \right\rvert\, 3\right)$ can be simplified considerably by using methods developed earlier (see, for instance, Chaba and Pathria 1976), with the result that $y_{\mathrm{AP}} \simeq \mathrm{i} 1.3267$. Combining the foregoing results, we may write for the three-dimensional spherical model under antiperiodic boundary conditions

$$
\frac{\xi_{\mathrm{c}}}{L} \approx \begin{cases}\frac{3}{\sqrt{5} \pi}=0.4271 & d^{*}=1 \tag{35a}\\ 0.2725 & d^{*}=2 \\ 0.2105 & d^{*}=3\end{cases}
$$

As $d \rightarrow 2_{+}$, equation (26) becomes analytically tractable. We note that, as $v=(d-2) /$ $2 \rightarrow 0_{+}$, the constant $D_{\tau}\left(v \mid d^{*}\right)$ approaches the limiting value $-\pi^{d^{*} / 2} v^{-1}$; again, see I . The small quantity ($y^{2}+\pi^{2} \tau^{2}$) is then determined by the leading term(s) of the sum over $n\left(d^{*}\right)$, with the result

$$
\begin{equation*}
\frac{\xi_{\mathrm{c}}}{L} \approx \frac{1}{2 \sqrt{\pi}}\left[\frac{1}{2} g_{\tau} \Gamma\left(\frac{2-d^{\prime}}{2}\right)(d-2)\right]^{-1 /\left(2-d^{\prime}\right)} \tag{36}
\end{equation*}
$$

which may be compared with the corresponding result of Singh and Pathria (1987) under periodic boundary conditions. For $d^{\prime}=1$, the foregoing result reduces to

$$
\begin{equation*}
\frac{\xi_{\mathrm{c}}}{L} \approx \frac{1}{\pi g_{\tau}(d-2)} \tag{37}
\end{equation*}
$$

which invites comparison with the conformal-invariance predictions for $\left(L^{1} \times \infty^{1}\right)$-strips (Cardy 1984), namely

$$
\frac{\xi_{\mathrm{c}}}{L} \approx \begin{cases}\frac{1}{2 \pi x_{\sigma}} & \tau=0 \tag{38a}\\ \frac{1}{4 \pi x_{\sigma}} & \tau=\frac{1}{2}\end{cases}
$$

where $x_{\sigma}=\frac{1}{2} \eta, \eta$ being the well-known critical exponent. A generalization of (38) to arbitrary d makes $x_{\sigma}=\frac{1}{2}(d-2+\eta)$ (Cardy 1987), which, for the spherical model, reduces to $x_{\sigma}=\frac{1}{2}(d-2)$. Remembering that g_{τ} under periodic boundary conditions is equal to 1 while under antiperiodic boundary conditions it is 2 , comparison between the two sets of results becomes truly striking.

As $d \rightarrow 4-$, the value of y^{2} is essentially determined by the first two terms of (27). We now obtain

$$
\begin{equation*}
y^{2} \simeq \frac{1}{2} \varepsilon \sum_{q\left(d^{*}\right)} \frac{\cos (2 \pi q \cdot \tau)}{q^{2}} \quad \varepsilon=(4-d) \ll 1 \tag{39}
\end{equation*}
$$

Clearly, $y^{2} \ll 1$ and hence

$$
\begin{equation*}
\xi_{\mathrm{c}} / L \approx 1 / 2 \pi \tau \tag{40}
\end{equation*}
$$

valid for any value of d^{\prime}, so long as $\tau>0$. It follows that, as $d \rightarrow 4$, the scaling behaviour of ξ is significantly affected by the boundary conditions imposed on the system. In passing, we note that the parameter y^{2} now provides only a small, of order ε, correction to the main result (40). In contrast, the corresponding result under periodic boundary conditions ($\tau \rightarrow 0$) is

$$
\frac{\xi_{\mathrm{c}}}{L} \approx \begin{cases}\frac{1}{2 \sqrt{\pi}}\left[\frac{1}{2} \Gamma\left(\frac{2-d^{\prime}}{2}\right) \varepsilon\right]^{-1 /\left(4-d^{\prime}\right)} & d^{\prime}<2 \tag{41a}\\ {[2 \pi \varepsilon \ln (1 / \varepsilon)]^{-1 / 2}} & d^{\prime}=2\end{cases}
$$

Case 2: $d=4$
At the upper critical dimension $d=d_{>}=4$, the spherical constraint at $T=T_{\mathrm{c}}$ and for $\tau>0$ is again satisfied by an infinitesimally small value of y^{2}, namely

$$
\begin{equation*}
y^{2} \simeq \frac{1}{2 \ln (L / a)} \sum_{q\left(d^{*}\right)} \frac{\cos (2 \pi q \cdot \tau)}{q^{2}} \tag{42}
\end{equation*}
$$

The correlation length ξ_{c} is, therefore, given by equation (40) as before. The corresponding result under periodic boundary conditions is given by Singh and Pathria (1992) and, quite expectedly, bears no resemblance to (40).

Case 3: $d>4$

The relevant value of y^{2} is now determined by the implicit equation

$$
\begin{equation*}
y^{2} \approx \frac{1}{8} \pi^{(d-4) / 2} v_{3} Q_{\tau}\left(\left.\frac{d-2}{2} \right\rvert\, d^{*} ; y\right) \quad 4<d<6 \tag{43}
\end{equation*}
$$

where v_{3} is the scaled variable given in (25). Clearly, y^{2} continues to be small in value and is approximately given by

$$
\begin{equation*}
y^{2} \simeq \Gamma\left(\frac{d-2}{2}\right) \frac{v_{3}}{16 \pi^{d / 2}} \cdot \sum_{q\left(d^{*}\right)}^{\prime} \frac{\cos (2 \pi q \cdot \tau)}{q^{d-2}} . \tag{44}
\end{equation*}
$$

It follows that, once again, ξ_{c} is given by equation (40), with y^{2} providing only a small correction.

5. Concluding remarks

The results reported in this paper provide a broad generalization of the ones reported by previous authors on the correlation length $\xi(T ; L)$ of a finite-sized spherical model under antiperiodic boundary conditions. Through a detailed analytical study subject to 'twisted' boundary conditions, of which both periodic and antiperiodic are special cases, we have explored the region of first-order phase transition ($T<T_{\mathrm{c}}$) as well as the core region exemplified by the bulk critical point $T=T_{c}$. The geometry considered here is also more general, namely $L^{d-d^{\prime}} \times \infty^{d^{\prime}}$, with $d^{\prime} \leqslant 2$ and $2<d<6$.

Finite-size scaling in the region $T<T_{c}$, where $\xi \gg L$, is formally the same for all $\tau \geqslant 0$, so long as $d^{\prime}<2$; any difference arising from a 'twist' in the ground-state spinwave mode(s) appears in the amplitude only. Of course, the general rule of having L replaced by $\frac{1}{2} L$, whenever boundary conditions along the finite dimensions of the system are replaced by antiperiodic ones, seems quite central to the analysis presented here; this feature is also tied closely to the multiplicity factor g_{τ} appearing in the various expressions obtained here. We suspect that these observations apply to all $O(n)$ models with $n \geqslant 2$. For $d^{\prime}=2$, the dependence of ξ / L on L becomes exponential but the amplitudes now differ in form depending on whether d is less than, equal to, or greater than 4.

At the bulk critical temperature ($T=T_{\mathrm{c}}$), we find a significantly distinct scaling behavior between the 'twisted' and 'straight' (or periodic) boundary conditions-. particularly as it applies to systems near and above the upper critical dimension. In the
former case, for any $\tau>0$, one finds a fluctuation-irrelevant (mean-field) critical behaviour (Ma 1976), i.e. ξ_{c} is pinned by the lowest allowed wavevector $k_{0}^{-1} \approx L / 2 \pi \tau$ (see equation (40)), with small corrections in the variables $(4-d), 1 / \ln (L / a)$ or v_{3}, depending on whether $d \leqslant 4, d=4$ or $d>4$ (see equations (39), (42) and (44) for y^{2}). In the latter case ($\tau=0$), fluctuations in the system dominate at $T=T_{\mathrm{c}}$, leading to a singular dependence of ξ_{c} on these very variables (see equations (41) and the corresponding results of Singh and Pathria ($1988,1 \overline{9} 92$) for $d \geqslant 4$). A common feature in either case, irrespective of the pinning involved or whether d^{\prime} is less than or equal to 2 , is that it is the parameter y^{2} (and not the correlation length ξ_{c} itself) that is determined by the replacement $8 \pi^{2} w \rightarrow 1 /(d-4) \rightarrow \ln (L / a) \rightarrow 1 /(4-d)$ as the total dimensionality of the system decreases from $d>4 \rightarrow d \geqslant 4 \rightarrow d=4 \rightarrow d \approx 4$. More general conclusions along these lines, applicable to all $n \geqslant 2$, are not fully clear at this point.

Acknowledgment

Financial support provided by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

Allen S and Pathria R K 1993a J. Math. Phys. 34 1497-herein referred to as I
Allen S and Pathria R K 1993b J. Phys. A: Math. Gen. 265173
Allen S and Pathria R K, unpublished
Barber M N, Fisher M E 1973 Ann. Phys. (NY) 771
Brézin E 1982 J. Physique 4315
Brézin E and Zinn-Justin J 1985 Nucl. Phys. B 257 [FS14] 867
Cardy J L 1984 J. Phys. A: Math. Gen. 17 L385: L961
Cardy J L 1987 Phase Transitions and Critical Phenomena eds C Domb and J L Lebowitz (New York: Academic) vol $11 \mathrm{pp} 55-126$
Chaba A N and Pathria R K 1976 J. Phys. A: Math. Gen. 91801
Eisenriegler E 1985 Z. Phys. B-Condensed Matter 61299
Fisher M E, Barber M N and Jasnow D 1973 Phys. Rev. A 81111
Fisher M E and Privman V 1985 Phys. Rev. B 32447
Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (New York: Academic) formula 1.438

Henkel M 1988 J. Phys. A: Math. Gen. 21 L227
Henkel M 1990 Finite-size Scaling and Numerical Simulation of Statistical Systems ed V Privman (Singapore: World Scientific) pp 353-433
Henkel M and Weston R A 1992 J. Phys. A: Math. Gen. 25 L207
Joyce G S 1972 Phase Transitions and Critic̈al Phenomena eds C Domb and M S Green (New York: Academic) vol 2 pp 375-442
Luck J M 1985 Phys. Rev. B 313069
Ma S K 1976 Modern Theory of Critical Phenomena (New York: Benjamin)
Pathria R K 1972 Phys. Rev. A 51451
Pathria R K. 1983 Can. J. Phys. 61228
Privman V 1990 Finite-size Scaling and Numerical Simulation of Statistical Systems ed V Privman (Singapore: World Scientific) pp 1-98
Rudnick J, Gaspari G and Privman V 1985a Phys. Rev. B 327594
Rudnick J, Guo H and Jasnow D 1985b J. Stat. Phys. 41353
Singh S and Pathria R K 1985 Phys. Rev. B 324618
Singh S and Pathria R K 1987 Phys. Rev. B 363769
Singh S and Pathria R K 1988 Phys. Rev. B 382740
Singh S and Pathria R K 1992 Phys. Rev. B 459759
Singh S, Pathria R K and Fisher M E 1986 Phys. Rev. B 336415 footnote 5

[^0]: \dagger Equivalent contributions arise from $n_{j}=0$ and $n_{j}=-1$ if $\tau_{f}=\frac{1}{2}$. Thus, depending on the precise structure of τ, we must include a multiplicity factor g_{τ} in (10); see, for instance, equations (14), (19), etc. The omission of this factor does not, however, affect the argument leading to the desired relationship (13).

