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Abstract We report explicit results for the zero-field correlation length, <(T; L), of a 
spherical-model ferromagnet confined to geometry C'"'x me (d>2, d'<2) and subjected 
to 'twisted' boundary conditions. In the region of first-order phase transition (T< T-), 6 
under 'twistcd' boundary conditions obeys the same scaling law as under periodic boundary 
conditions, though with a different amplitude. In the 'core' region (T= TJ, the scaling 
behaviour changes radically as one moves from one set of boundary conditions to the 
other-affected greatly by *e 'pinning' of the ground-state wavevector ko of the system. 

1. Introduction 

In a recent communication Henkel and Weston (1992) reported an exact calculation 
of the universal amplitude A of the correlation length 5 of the spherical model of 
ferromagnetism confined to geometry L' x 00' and subjected to antiperiodic boundary 
conditions. Invoking a well-known analoa between statistical mechanics and quantum 
field theory (Henkel 1988, 1990), they derived a relationship between 5 and the thermo- 
geometric parameter y of the system (Pathria 1972, 1983), namely 

e=dL [ y +-d* : 1- (1) 

valid at the bulk critical temperature T,. Here, L denotes the size of the system in each 
of the d* dimensions in which the system is finite while the precise value of y depends 
on both d* and the total dimensionality d. Recalling that the corresponding result 
under periodic boundary conditions is j=L/2y,  we note that the term additional toy' 
in equation (1) is a measure of the 'shift in the quantum levels of the system owing to 
a switch from periodic to antiperiodic boundary conditions'. 

While the main thrust of the Henkel-Weston approach was to extend a certain well- 
known result of Cardy (1984) for the correlation length of a system from two to 
three dimensions, we here present an approach that examines the same problem in a 
considerably generalized context. To begin with. we extend the validity of relationship 
(1)  to all temperature regimes of interest--especially to the region of first-order phase 
transition ( T <  T,) where the behaviour of {, as a function of L, is radically different 
from that in the 'core' region (T-T,). Second, we extend the calculation of 5 to a 
more general dimensionality d which includes the hyperscaling regime (2<d<4), the 
mean-field regime (d>4) as well as the borderline dimensionality4. Third, we introduce 
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a continuous vector parameter T = ( rl , . . . , Z d ’ )  that measures the shift of the quantum 
levels of the system-such that any 151 > O  entails ‘twisted’ boundary conditions (of 
which antiperiodic ones, with z, =. . . = rd.= I ,  are an extreme case). while z=O entails 
the familiar periodic ones. 

In section 2 we provide an independent, theoretical basis for a generalized version 
of equation ( 1 )  by appealing to certain special features of the spin-spin correlation 
function, G(R,  T; L), of the spherical model ferromagnet confined to geometry 
Ld’ x co8 (d*+d’=d>2) .  This enables us to determine the correlation length t (T;  L) 
of the system, extending the validity of the Henkel-Weston result from T= T, to all 
T<Tc; we shall note that the result in question applies at T 3  T, as well. Of course, for 
an explicit evaluation of f, the parameter y has to he eliminated with the help of the 
constraint equation of the system (see, for instance, Singh and Pathria 1985). In section 
3 this explicit evaluation is carried out for T< T,. We find that, ford‘ < 2, the asymptotic 
behaviour of 5 under antiperiodic boundary conditions is qualitatively similar to the 
one found previously under periodic boundary conditions; it is only the amplitudes 
that differ. For d‘=2.  the comparison is somewhat subtle. In section 4 we calculate 5 
at the bulk critical temperature T, and find a radically different scaling behaviour 
depending on whether I+j > O  or  IT^ = O ;  the observed difference is even more striking 
when d is close to, or greater than, 4. Under ‘twisted’ boundary conditions the correla- 
tion length follows closely the behaviour found in d = 4 -  E dimensions under free 
(Dirichlet) boundary conditions (Eisenriegler 1985) or in the king model with d > 4  
again under free boundary conditions (Rudnick et a1 1985), and bears little resemblance 
to the results pertaining to the periodic case. In section 5 we close the paper with some 
general remarks on the problem studied here. 

S Allen and R K Pathria 

I 

2. Formulation of the problem 

In a separate investigation (Allen and Pathria, unpublished) we have examined the spin- 
spin correlation function, G(R, T; L) ,  of a d-dimensional, field-free spherical-model 
ferromagnet confined to geometry Ld’ x cod’ (d*+d’=d>2)  under ‘twisted’ boundary 
conditions. Using techniques developed by Joyce (1972), by Barber and Fisher (1973) 
and bysinghand Pathria (1957), welind that for,?, L>>awhereuisthelatticeconstant 
of the system 

K(d--Z)/2(2J’(lq+&l/2 + E;) ’” )  (2) 

.cL = RL/L 811 =RiiIL. (3) 

with 

Hcre, J is the nearest-neighbour interaction parameter. z is a continuous vector param- 
eter with components r l  , . . . , 5 d .  each lying in the interval (0, i), R L  is the component 
of R in the d*-dimensional sub-space while R, ( = R - R , )  is the corresponding com- 
ponent in the 8-dimensional sub-space. The sum involving modified Bessel functions 
K J s )  goes over the entire q-space in d* dimensions, while the parameter y is a scaled 
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variable defined by the relation 

7, being the (spherical) field that enables one to satisfy the constraint on spins appropri- 
ate to the model under study. This leads to the constraint equation 

where 

As shown elsewhere (Allen and Pathria 1993a-hereafter referred to as I). thefunction 
Q7(vl d * ; y )  is regular in y2  for all y2>-n’r2-a fact vitally important for analyses 
pertaining to ‘twisted’ boundary conditions under which the minimum value of 4, and 
hence of y2, is negative; in fact, (y2),j. is precisely equal to -z2r2 and is attained at 
T=OK.  

The problem ofy2 becoming negative is seemingly detrimental to the sum appearing 
in equation ( 2 )  for G(R. T, L) which is initially defined only for y > 0. An application 
of the Poisson summation formula, however, renders this expression into the form 

which may be analytically continued into the region y2<0-right up to, but excluding, 
the point $=-z’r’ where the true singularity of the problem lies. In terms of tempera- 
ture, expression (7) is valid down to, but excluding, T=O K. 

For y>> 1 (which pertains to the region T s  Tc), the sum in (7)  may be approximated 
by an integral over n(d*), leading to the bulk result 

(d-2)/2 

G(R, T; L )  = &-2)/2( :) 
77-dd-2 

where R= (R: +Ri)1’2.  while < B ~ L / 2 y = a / f i  is the bulk correlation length. Clearly.. 
there is no ambiguity in defining 5 in the region T a  T,. 

As Tdecreases from above and approaches the close vicinity of T, , y’ under ‘twisted’ 
boundary conditions may become negative. with magnitude of order unity. As T 
decreases further, y2 changes fast to become almost equal to -R’T’ and stays so until 
T-0 K and y2+-n2zZ. The situation throughout this region can be handled pretty 

’ 
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well through expression (7). In particular, keeping cL fixed and letting become increas- 
ingly large, the dominant contribution to the sum in (7) comes from the term with n= 
0, with the result? 

S Allen and R K Pathria 

X K ( ~ - ~ . ) ~ Z ( ~ E I I ( Y ~  + zV)”’). (10) 
With G(R) factorized in terms of the comDonents R I  and RI,.  we may invoke the ., . - 
correlatibd function of the &-dimensional bkk system, namely 

and write (IO) in the highly instructive form 

with 

The interpretation of this result is straightforward. In particular, we note that in 
the perceived situation the parameters RL and L are much smaller than Rll and 5,  with 
the result that, while the decay ofcorrelations in the direction of RL is determined 
sorely by the ‘twist’ parameter T, that in the direction of RII is determined by a (correla- 
tion) function pertaining in form to a &-dimensional bulk system but scaled by a length 
5 given by (13). Clearly, 5 represents the correlation length of the actual system in 
geometry Ld’ x of and not of the &-dimensional bulk system (which would have 
nothing to do with L). 

Comparing (13) with (1) and remembering that, with antiperiodic boundary condi- 
tions applied along all h i t e  dimensions, T’ = ad*, we find that our expression for {, 
which should be valid for all T< T,, is precisely the same as that derived by Henkel 
(1988) for T= T,. The validity of Henkel’s formula (1) is thus extended to all TST,. 
At the same time, since for y>>l this result reduces to the r-independent expression 
L/Zy, it applies at T& T. as well. 

In passing, we note that relationship (13) for the correlation length of the spherical 
model under antiperiodic boundary conditions had been conjectured earlier by Singh 
et al(1986). 

3. Correlation length at T <  T, 

In the region of first-order phase transition (T< Tc), wherey2= -nZzZ, we may express 
the various functions ofy in terms of the small parameter ( y 2 +  n2r2). Using constraint 

7 Equivalent contributions &se from q = O  and “,=-I if rI= I .  Thus, depending on the precise structure 
of 7, we must include a multiplicity factor g, in (10); see, for instance, equations (14), (19), etc. The omission 
of this factor does not, however. affect the argument leading to the desired relationship (13) 
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equation ( 5 ) ,  we should then be able to determine (y ‘+  z’r’) as a function of T and 
L, and hence, by (13), C(T; L). To accomplish this task we make use of the asymptotic 
formula (see I). 

J--$? lim Qc(v I d * ;  y)  N$g, z id ’ -2T( id* -  v ) ( y2+  z’?)v-id’ v < ; d *  (14) 

where g, denotes the multiplicity of the terms. in the sum over n(d*), for which In+ rj = 
t. In general, g,=2’ where r(<d*)  is the number of components tj, of T, that equal 
i ; for each of these components, two terms (with nj=O and -1) contribute equally 
toward the sum. If antiperiodic boundary conditions are applied in each of the d* finite 
dimensions, then g, =2d*. 

I 

Substituting (14) into (5 ) ,  we obtain 

where ZI is the scaled variable appropriate to this region (see Fisher and Privman 1985, 
Privman 1990) 

=,=Y(T)Ld-’jr ’ (16) 

Y(T) being the helicity modulus of the bulk system which, for a spherical-model ferro- 
magnet. is known to be (Fisher et a1 1973) 

Expression (1 3) then gives 

Comparing (18) with  the^ corresponding expression for the periodic case (Singh and 
Pathria 1987), we fmd that in this region the two results are formally the same, except 
for a difference in amplitudes resulting from the replacement of L by f L  as one switches 
from the periodic boundary conditions to the antiperiodic ones. Further studies show 
that, so long as d’<2, expression (18) for C(T; L )  at T< T, holds for d>4 as well. 

For d’=2, the situation is formally different. Now we employ the asymptotic 
formula 

where Mz’(d*) is a constant defined in I. We now obtain 

Thus, the quantity C/L in this case varies exponentially with the scaled variable 11, the 
constant M,(d*) affecting only the amplitude. For d =  3 (and hence d* = 1) 

MO( 1) = -z-*/’In 2 ~ ~ ~ ~ ( 1 )  =z-i/Zin (z/2) (21,22) 
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leading to results that agree with the previous calculations of Singh and Pathria 
(1985,1987). In the present case, the amplitude of 5 differs qualitatively-depending 
on whether d is less than 4 as above or not. For d=4, for instance, we obtain 

S Allen and R K Pathria 

where ~ ( 2 )  is the digamma function, C4=-4.7920, while M,(2) can be obtained from 
I; as z-0, the result of a recent study pertaining to the periodic case (Singh and Pathria 
1992) is recovered. For d>4, on the other hand, 

where U) is another scaled variable dehed by (see Singh and Pathria 1988) 

The constant Mz(d-2) in this case has to be determined numerically. 

4. Correlation length at T =  T. 

There have been numerous studies on how the correlation length 5 varies explicitly 
with L (and d) at the bulk critical temperature T, for finite-size O(n) models under 
periodic boundary conditions (see, for instance, Brizin 1982, Brizin and Zinn-Justin 
1985, Luck 1985, Rudnick et a1 1985b). However, only limited results are available for 
systems under non-periodic boundary conditions, such as Eisenriegler (1985), Henkel 
(1988), Henkel and Weston (1992). Here we provide results for the correlation length 
c(T,; L) of the spherical model under ‘twisted’ boundary conditions in general 
geometry Ld-& x cod’ for several regimes of d. 

Case I: 2 < d < 4  

The spherical constraint (5) now reduces to the condition 

which, for 2<d<4,  may be re-written as (see I) 

- I n + r l ? V - d ’  =o I D,(vjd*)+T(!d*-v) 

v=(d-2)/2 (26) 

where D,(vId*) is another constant defined in I. Using a generalized delinition of 
&(VI d*), equation (26) can also be written as 
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effectively reducing the problem from one involving a d*-dimensional sum over vector 
n to one involving a 1-dimensional sum over scalar I ;  of course, a knowledge of the 
constants D,( v - [I d") is essential for this reduction. 

For d=3 and d*= 1, the problem can be solved exactly, for in this case equation 
(26) assumes the form 

The infinite product in (28) can be written in a closed form (see Gradshteyn and Ryzhik 
1980) which leads to the explicit solution. 

y.1 r=r,=cosh-'($-sin2 n ~ ) ' / ~ .  (29) 

Special values, y~=ln($+ 1)/2 and ~ ~ , ~ = i a / 3 ,  are already known; the intermediate 
values, y1/6=0, yl14=in/6 and ylI3=in/4, may be noted now. 

For d*=2, equation (2) cannot be written in a closed form; the constants 
D,(o I 2) are, however, known for T = (A , A), viz. 

(30) D,(w 12) =4.2'-"r(1- w)A (1 -w)P(l - U )  

where 2 (s) and P ( s )  are analytic continuations of the functions 
m 

m 
P ( s ) =  (-1)'(2l+I)-s s>o. 

/=a 

Equation (27) then reduces to 

which may be solved numerically for y. For d=3, i.e. v = i ,  we obtain: y 4  1.25213 
which may be compared with the value, i 5/4. conjectured by Henkel and Weston 
(1992); see also Allen and Pathria (1993b). 

For d=d* =3, equation (26) assumes the form 

which can also be rendered into a form similar to (27). The three-dimensional sums 
appearing in the definitions of the constants D,(i - 11 3) can be simpaed considerably 
by using methods developed earlier (see, for instance, Chaba and Pathria 1976), with 
the result that yAp=i 1.3267. Combining the foregoing results, we may write for the 
three-dimensional spherical model under antiperiodic boundary conditions 

(354 

( 3 3 )  

(0.2105 d*=3 (354 
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As d-2+, equation (26) becomes analytically tractable. We note that, as v =  (d-2)/ 
2-0+, the constant & ( V I  d*) approaches the limiting value -nd’/’v-’; again, see 1. 
The small quantity (y’+ n’z’) is then determined by the leading term(s) of the sum 
over n(d*),  with the result 

which may be compared with the corresponding result of Singh and Pathria (1987) 
under periodic boundary conditions. For d‘= 1, the foregoing resdt reduces to 

which invites comparison with the conformal-invariance predictions for (L’ x col)-strips 
(Cardy 1984), namely 

where x,= t q ,  q being the well-known critical exponent. A generalization of (38) to 
arbitrary d makes x,=i(d-Z+q) (Cardy 1987), which, for the spherical model, 
reduces to x,= f (d-2) .  Remembering that g, under periodic boundary conditions is 
equal to 1 while under antiperiodic boundary conditions it is 2, comparison between 
the two sets of results becomes truly striking. 

As d - L ,  the value of y’ is esscptially determined by the first two terms of (27). 
We now obtain 

Clearly, y2<< 1 and hence 

5./L = 1 / 2 n  z 

valid for any value of d’, so long as 7 > 0. It follows that, as d+4-, the scaling behaviour 
of 5 is significantly affected by the boundary conditions imposed on the system. In 
passing, we note that the parameter y2  now provides only a small, of order E, correction 
to the main result (40). In contrast, the corresponding result under periodic boundary 
conditions ( z i 0 )  is 

d’<2 

d’=2. 
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Case 2: d=4 

At the upper critical dimension d=d, =4. the spherical constraint at T = Z  and for 
z > 0 is again satisfied by an infinitesimally small value of y’, namely 

The correlation length & is, therefore, given by equation (40) as before. The correspond- 
ing result under periodic boundary conditions is given by S i g h  and Pathria (1992) 
and, quite expectedly, bears no resemblance to (40). 

Case 3: d>4 

The relevant value of y2  is now determined by the implicit eqmtion 

where U) is the scaled variable given in (25). Clearly. y’ continues to be small in value 
and is approximately given by 

It follows that, once again, 6. is given by equation (40), withy’ providing only a s m a l l  
correction. 

5. Concluding remarks 

The results reported in this paper provide a broad generdization of the ones reported 
by previous authors on the correlation length t ( T ;  L) of a finite-sized spherical model 
under antiperiodic boundary conditions. Through a detailed analytical study subject to 
‘twisted‘ boundary conditions, of which both periodic and adperiodic are special cases, 
we have explored the region of first-order phase transition (T< T,) as well as the core 
region exemplified by the bulk critical point T= T,. The geometry considered here is 
also more general, namely L d - c ~  cod, with d’S.2 and 2<d<6.  

Finite-size scaling .in the region T< T,, where c>>L, is -formally the same for all 
z>O. so long as d’<2; any difference arising from a ‘twist’ in the gound-state spin- 
wave mode(s) appears in the amplitude only. Of course, the general rule of having L 
replaced by $L, whenever boundary-conditions along the finite dimensions ofthe system 
are replaced by antiperiodic ones, seems quite central to the analysis presented here; 
this feature is also tied closely ‘to the multiplicity factor g, appearing in the various 
expressions obtained here. We suspect that these observations apply to all O(n) models 
with nBZ. For d‘=2, the dependence of s / L  on L be comes^ exponential but the 
amplitudes now differ.in form depending on whether d is less than, equal to, or greater 
than 4. 

At the bulk critical temperature (T=T,),  we find a significantly distinct scaling 
behavior between the ‘twisted’ and ‘straight’ (or periodic) boundary conditions- 
particularly as it applies to systems near and above the upper critical dimension. In the 
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former case, for any 5 > 0, one h d s  a fluctuation-irrelevant (mean-field) critical behav- 
iour (Ma 1976), i.e. 5. is pinned by the lowest allowed wavevector k;l=L/2m (see 
equation (40)), with small corrections in the variables (4-4, l/ln(L/a) or ug, depend- 
ing on whether d64, d=4 or d24 (see equations (39), (42) and (44) for U*). In the 
latter case (~=0) ,  fluctuations in the system dominate at T= T., leading to a singular 
dependence of cc on these very variables (see equations (41) and the corresponding 
results of Singh and Pathria (1988, 1992) for d>4). A common feature in either case, 
irrespective of the pinning involved or whether d’ is less than or equal to 2, is that it 
is the parameter yz (and not the correlation length cc itself) that is determined by the 
replacement 8n2v-tl/(d-4)+ln(L/a)-,1/(4-d) as the total dimensionality of the 
system decreases from d>4+da4+d=4-d<4. More general conclusions along these 
lines, applicable to all n>2, are not fully clear at this point. 
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